A simple algorithm for a class of nonsmooth convex-concave saddle-point problems
نویسندگان
چکیده
This supplementary material includes numerical examples demonstrating the flexibility and potential of the algorithm PAPC developed in the paper. We show that PAPC does behave numerically as predicted by the theory, and can efficiently solve problems which cannot be solved by well known state of the art algorithms sharing the same efficiency estimate. Here for illustration purposes, we compare PAPC with the recent ADM-based scheme of [5] and the extra-gradient based methods [9, 10, 1].
منابع مشابه
Decomposition Techniques for Bilinear Saddle Point Problems and Variational Inequalities with Affine Monotone Operators
The majority of First Order methods for large-scale convex-concave saddle point problems and variational inequalities with monotone operators are proximal algorithms which at every iteration need to minimize over problem’s domain X the sum of a linear form and a strongly convex function. To make such an algorithm practical, X should be proximal-friendly – admit a strongly convex function with e...
متن کاملMirror Prox Algorithm for Multi-Term Composite Minimization and Alternating Directions
In the paper, we develop a composite version of Mirror Prox algorithm for solving convex-concave saddle point problems and monotone variational inequalities of special structure, allowing to cover saddle point/variational analogies of what is usually called “composite minimization” (minimizing a sum of an easy-to-handle nonsmooth and a general-type smooth convex functions “as if” there were no ...
متن کاملStochastic Variance Reduction Methods for Saddle-Point Problems
We consider convex-concave saddle-point problems where the objective functionsmay be split in many components, and extend recent stochastic variance reductionmethods (such as SVRG or SAGA) to provide the first large-scale linearly conver-gent algorithms for this class of problems which are common in machine learning.While the algorithmic extension is straightforward, it come...
متن کاملCommunication-Efficient Distributed Primal-Dual Algorithm for Saddle Point Problem
Primal-dual algorithms, which are proposed to solve reformulated convex-concave saddle point problems, have been proven to be effective for solving a generic class of convex optimization problems, especially when the problems are ill-conditioned. However, the saddle point problem still lacks a distributed optimization framework where primal-dual algorithms can be employed. In this paper, we pro...
متن کاملCanonical Primal-Dual Method for Solving Non-convex Minimization Problems
A new primal-dual algorithm is presented for solving a class of non-convex minimization problems. This algorithm is based on canonical duality theory such that the original non-convex minimization problem is first reformulated as a convex-concave saddle point optimization problem, which is then solved by a quadratically perturbed primal-dual method. Numerical examples are illustrated. Comparing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oper. Res. Lett.
دوره 43 شماره
صفحات -
تاریخ انتشار 2015